Amazon rainfall from space: the case of Roraima state

11 February 2021 | Duration of reading: 8 min

By Larissa de Castro Ribeiro

Rainfall is one of the main hydrological cycle components and is directly responsible for ecosystem maintenance and landscape evolution. Furthermore, rainfall estimation is crucial for water resources management, allowing a satisfactory planning of water use (e.g., public supply, agriculture and energy generation). Therefore, quantifying rainfall is essential to comprehend a variety of processes of the terrestrial dynamics.

Monthly accumulated rainfall for October 2020 (mm/month), estimated by the GPM satellite constellation (GPM_3IMERGM v06) in the Amazon region. Source: Plataforma Giovanni (NASA).

          One of the methods commonly utilized to measure rainfall is through field monitoring (in situ) equipment, such as rain gauges (Figure 2). A rain gauge consists of a container that gathers the rainfall over a predefined area and expresses its amount in millimeters, in which each millimeter corresponds to 1 liter of water in an area of 1 m².

         However, the in situ monitoring becomes challenging in some regions, such as the Amazon forest, and is insufficient to fully represent the variation of rainfall behavior throughout this huge area. Such limitation is a result of the difficulty to install rain gauges and to maintain them functional in remote areas. In the Brazilian HIDROWEB platform (Link) we can see the network of rain gauges stations maintained by the Brazilian Water Agency (ANA) in the Brazilian territory.

Automatic rain gauge. Source: Danrlei Menezes (IPH/UFRGS).

          Given these difficulties, other methodologies were developed to evaluate rainfall through remote sensing, utilizing data generated by satellites in space missions. Some of the most known missions are TRMM  (Tropical Rainfall Measuring Mission), which analyses multiple satellites to estimate rainfall, GOES (Geostationary Operational Environmental Satellite), which estimates can easily be observed in INMET page (Link) on the "Satélite" tab, and GPM (The Global Precipitation Measurement).

          For example, GPM uses a satellite constellation (illustrated in the image below) to estimate rainfall each 30 minutes for latitudes between 60°N and 60°S, with spatial resolution of 0,1° x 0,1° (i.e., estimates rainfall of an area with approximately 10 km x 10 km).

Satellites and member nations of GPM constellation. Source: NASA.

          Os dados de chuva estimados por sensoriamento remoto podem ser obtidos e observados  através de sites como a plataforma Giovanni (GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure) da NASA (Link), and then can be analyzed and quantified utilizing geographical information systems (GIS) 

          In our study "Precipitation estimated by the TRMM satellite in the Brazilian Roraima state”, we evaluated the usage of satellite data through the comparison of remote sensing estimates and data from 36 rain gauges available by ANA, utilizing historical rainfall series of 11 years (2005 to 2015). 

          In the figure below, we can observe that TRMM underestimated the rainfall in the southwestern region and overestimated it in the northeastern region, when compared to in situ rainfall data. In summary, comparing error magnitudes and correlation of rainfall estimates (more information here), os dados observados pelo satélite apresentaram desempenho satisfatório na representação das precipitações pluviométricas do estado de Roraima.

Mean annual rainfall in Roraima state a) obtained from rain gauges and b) estimates from TRMM. Source: Ribeiro et al, 2019.

          Studies similar to the presented here show remote sensing techniques as a potential alternative to accurately estimate rainfall, providing data to more refined water availability studies, especially in data scarce regions. However, we emphasize that field measurements, as rain gauges, are fundamental to evaluate, validate and enhance the performance of satellite estimates.

 Science is done collaboratively

           The text presented is the result of the research carried out by Larissa de Castro Ribeiro for her undergrad thesis. The work was supervised by Dr. Silvestre Lopes da Nobrega and had the financial support of the Brazilian government through CAPES; data were provided by the Brazilian Water Agency (ANA) and the TRMM Mission (NASA and JAXA).

Want to know more? Access the links below! 

Ribeiro et al. (2019). Precipitação estimada pelo Satélite TRMM na região do Estado de Roraima. Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto. ISBN: 978-85-17-00097-3. (Link).

Beck et al. (2019). MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. https://doi.org/10.1175/BAMS-D-17-0138.1. (Link).

Oliveira et al. (2019). Avaliação dos dados de precipitação estimados pelo MSWEP para a bacia Amazônica. Anais do XVIII Simpósio Brasileiro de Sensoriamento Remoto -SBSR ISBN: 978-85-17-00088-1. (Link)

Santos et al. (2018). Validação dos dados de precipitação estimados pelo satélite GPM na região sul do Amazonas. Rev. Ambient. Água [online]. 2019, vol.14, n.1. (Link).

NASA. IMERG: Integrated Multi-satellitE Retrievals for GPM. (Link).

NASA. TRMM – Tropical Rainfall Measuring Mission. (Link)

 

Larissa de Castro Ribeiro is a civil engineer (UFRR – 2018). She is currently a master's student at the Institute of Hydraulic Research (IPH) – UFRGS, where she studies the characterization of the hydrological regime of the rivers of South America. More details on Lattes.

Leia também

Rios-Voadores-1_4x3
Impactos do aquecimento global e do desmatamento no clima da Amazônia
23 February, 2024
Por Murilo Ruv Lemes | Nas últimas décadas, vários estudos identificaram os impactos que a substituição da floresta amazônica por pastagem degradada ou área agrícola pode causar no clima regional e global.
Imagem 1, foto - Miguel Monteiro_4x3
O lado oculto do acesso à água na região das águas
10 December, 2023
Por Milena Barbosa | Há um problema histórico de acesso à água potável na região com maior disponibilidade de água doce do mundo.
capa
O ciclo da água da Amazônia observado do espaço
17 April, 2022
Por Alice Fassoni-Andrade, Fabrice Papa, Rodrigo Paiva, Sly Wongchuig e Ayan Fleischmann | A Bacia Amazônica é a maior bacia hidrográfica do mundo.
foto_por_alex_ovando capa
Os impactos das mudanças climáticas no ciclo da água na Amazônia
16 December, 2021
Por Leonardo Vergasta e Weslley B. Gomes | A Bacia Amazônica abrange cerca de 40% das florestas tropicais de todo o globo.
FAC-JP
Fossa Alta Comunitária como solução para os desafios de tratar o esgoto nas várzeas da Amazônia
27 October, 2021
Por Cássio Augusto da Silva Oliveira e João Paulo Borges Pedro | Apenas 22% da população amazonense possui coleta de esgoto, e a taxa de tratamento não chega a 19%.
fig1
Falta água (potável) no meio da Amazônia
19 October, 2021
Por Leonardo Capeleto | Na região com a maior disponibilidade de água doce do planeta, milhões de pessoas ainda não possuem acesso seguro à água potável.
Face_insta CARD NOVO LINK PAINEL QUINTA
Mudanças Climáticas, Amazônia e impactos para a sociedade no evento Amazônia Interdisciplinar
30 September, 2021
Por Arielli Machado, Filipe Lindau, Kauane Bordin, Júlia Menin e Sly Wongchuig | Buscamos integrar e discutir aspectos biológicos, físicos e sociais sobre uma temática importante para a sociedade sobre a Amazônia.
Fig1
A paisagem e a hidrologia de uma bacia no arco do desmatamento
26 August, 2021
Por Paulo Pontes e Rosane Cavalcante | Localizada no arco do desmatamento da Amazônia, a bacia hidrográfica do rio Itacaiúnas é um importante objeto de estudo que abrange as esferas ambiental, social e econômica.
fig1_pt2-Copia
Purus River Basin: observed from space and modelled on Earth
14 May, 2021
Imagem2
What do the climate projections tell us about the water resources in the Amazon?
14 April, 2021
en_USEnglish